Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 259
Filtrar
1.
Sci Adv ; 10(10): eadj8803, 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38457494

RESUMO

Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription initiation by POL I. Our results reveal an essential ERG- and c-MYC-dependent transcriptional network involved in regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified vulnerabilities and therapeutic targets may emerge.


Assuntos
Proteínas de Fusão bcr-abl , Leucemia-Linfoma Linfoblástico de Células Precursoras B , Regulador Transcricional ERG , Animais , Humanos , Camundongos , Proteínas de Fusão bcr-abl/genética , Proteínas de Fusão bcr-abl/metabolismo , Proteínas de Fusão bcr-abl/uso terapêutico , Redes Reguladoras de Genes , Leucemia-Linfoma Linfoblástico de Células Precursoras B/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras B/metabolismo , Leucemia-Linfoma Linfoblástico de Células Precursoras , Fatores de Transcrição/genética , Regulador Transcricional ERG/genética
2.
Tissue Cell ; 87: 102314, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38309204

RESUMO

Lymphatic metastasis is a common metastasis of lung adenocarcinoma (LUAD). The current study illustrated the action of lncRNA NKX2-1-AS1 in lymphangiogenesis in LUAD and the underlying mechanisms. Clinical tissue samples were collected for determining NKX2-1-AS1 expression. Then, H441 and H661 cells were selected to perform gain- and loss-of-function assays for dissecting the roles of NKX2-1-AS1 in LUAD cell proliferation and migration. Besides, H441 and H661 cell supernatant was harvested to stimulate HLECs for assessing tube formation ability. Interaction among NKX2-1-AS1, ERG, and fatty acid binding protein 4 (FABP4) was validated through luciferase and RIP assays. NKX2-1-AS1 was highly-expressed in LUAD tissues. Silencing NKX2-1-AS1 suppressed H441 and H661 cell proliferation and migration, reduced expression levels of lymphangiogenesis-related factors (LYVE-1, VEGF-C, VEGFR3, VEGF-A, VEGFR2, and CCR7), and inhibited HLEC tube formation. Interaction validation demonstrated that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG. Overexpression of FABP4 could effectively block the inhibition role of NKX2-1-AS1 silencing in lymphangiogenesis in H441 and H661 cells. This study provided evidence that NKX2-1-AS1 regulated FABP4 transcription by binding to ERG to facilitate the proliferation and migration of LUAD cells and tube formation of HLECs, thus participating in lymphangiogenesis.


Assuntos
Adenocarcinoma , Neoplasias Pulmonares , MicroRNAs , RNA Longo não Codificante , Humanos , Adenocarcinoma/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Proteínas de Ligação a Ácido Graxo/genética , Proteínas de Ligação a Ácido Graxo/metabolismo , Regulação Neoplásica da Expressão Gênica , Pulmão/patologia , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Linfangiogênese/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
3.
World J Surg Oncol ; 22(1): 49, 2024 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-38331878

RESUMO

BACKGROUND: TMPRSS2-ERG (T2E) fusion is highly related to aggressive clinical features in prostate cancer (PC), which guides individual therapy. However, current fusion prediction tools lacked enough accuracy and biomarkers were unable to be applied to individuals across different platforms due to their quantitative nature. This study aims to identify a transcriptome signature to detect the T2E fusion status of PC at the individual level. METHODS: Based on 272 high-throughput mRNA expression profiles from the Sboner dataset, we developed a rank-based algorithm to identify a qualitative signature to detect T2E fusion in PC. The signature was validated in 1223 samples from three external datasets (Setlur, Clarissa, and TCGA). RESULTS: A signature, composed of five mRNAs coupled to ERG (five ERG-mRNA pairs, 5-ERG-mRPs), was developed to distinguish T2E fusion status in PC. 5-ERG-mRPs reached 84.56% accuracy in Sboner dataset, which was verified in Setlur dataset (n = 455, accuracy = 82.20%) and Clarissa dataset (n = 118, accuracy = 81.36%). Besides, for 495 samples from TCGA, two subtypes classified by 5-ERG-mRPs showed a higher level of significance in various T2E fusion features than subtypes obtained through current fusion prediction tools, such as STAR-Fusion. CONCLUSIONS: Overall, 5-ERG-mRPs can robustly detect T2E fusion in PC at the individual level, which can be used on any gene measurement platform without specific normalization procedures. Hence, 5-ERG-mRPs may serve as an auxiliary tool for PC patient management.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteínas de Fusão Oncogênica/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , RNA Mensageiro/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Serina Endopeptidases/uso terapêutico
4.
Medicina (Kaunas) ; 60(1)2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38256434

RESUMO

Background and Objectives: Prognostic biomarkers in prostate cancer (PCa) include PTEN, ERG, SPINK1, and TFF3. Their relationships and patterns of expression in PCa in developing countries, including Jordan, have not yet been investigated. Materials and Methods: A tissue microarray (TMA) of PCa patients was taken from paraffin-embedded tissue blocks for 130 patients. PTEN, ERG, SPINK1, and TFF3 expression profiles were examined using immunohistochemistry (IHC) and correlated with each other and other clinicopathological factors. Results: PTEN loss of any degree was observed in 42.9% of PCa cases. ERG and TFF3 were expressed in 59.3% and 46.5% of PCa cases, respectively. SPINK1 expression was observed in 6 out of 104 PCa cases (5.4%). Among all PCa cases (n = 104), 3.8% (n = 4) showed SPINK1+/ERG+ phenotype, 1.9% (n = 2) showed SPINK1+/ERG- phenotype, 56.7% (n = 59) showed SPINK1-/ERG+ phenotype, and 37.5% showed SPINK1-/ERG- phenotype (n = 39). Among ERG positive cases (n = 63), 6.3% were SPINK1 positive. Among SPINK1 positive cases (n = 6), 66.7% were ERG positive. SPINK1 expression was predominantly observed in a subgroup of cancers that expressed TFF3 (6/6). Additionally, a statistically significant loss of PTEN expression was observed from Gleason Score 6 (GS6) (Grade Group 1 (GG1)) to GS9-10 (GG5); (p-value 0.019). Conclusions: This is the first study to look at the status of the PTEN, ERG, SPINK1, and TFF3 genes in a Jordanian Arab population. Loss of PTEN has been linked to more aggressive prostate cancer with high GSs/GGs. SPINK1 expression was predominantly observed in a subgroup of cancers that expressed TFF3. Our results call for screening these biomarkers for grading and molecular subtyping of the disease.


Assuntos
Neoplasias da Próstata , Inibidor da Tripsina Pancreática de Kazal , Masculino , Humanos , Inibidor da Tripsina Pancreática de Kazal/genética , Jordânia , Árabes , Biomarcadores , Regulador Transcricional ERG/genética , Fator Trefoil-3 , PTEN Fosfo-Hidrolase/genética
5.
Prostate ; 84(2): 166-176, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37839045

RESUMO

PURPOSE: Prostate cancer (PCa) is the leading cause of death among men in 48 countries. Genetic alterations play a significant role in PCa carcinogenesis. For the hypothesis of this research, five unique polymorphisms (SNP) were investigated in different genes that showed to be associated in different ways with PCa: rs4430796, rs2735839, rs4792311, rs12329760, and rs28931588, respectively for the genes HNF1B, KLK3, ELAC2, TMPRSS2-ERG, and CTNNB1. PATIENTS AND METHODS: Blood samples from 426 subjects were evaluated: 290 controls (161 females and 129 males) and 136 PCa patients. SNP were determined by real-time polymerase chain reaction. TaqMan SNP genotyping assay. In the control samples, the SNPs were defined in association with the self-reported ethnicity, and in 218 control samples with markers with ancestry indicators. The genes were in Hardy-Weinberg equilibrium. One hundred and seventy control samples were matched by ethnicity for comparison with the PCa samples. RESULTS: The G allele at rs28931588 was monomorphic in both patients and controls studied. Significant differences were observed in allelic and genotypic frequencies between the control and Pca samples in rs2735839 (KLK3; p = 0.002 and χ2 = 8.73 and p = 0.01, respectively), by the global frequency and in the dominant model rs2735839_GG (odds ratio [OR] = 0.51, p = 0.02). AA and GA genotypes at rs4792311 (ELAC2) were more frequent in patients with Gleason 7(4 + 3), 8, and 9 (n = 37%-59.7%) compared to patients with Gleason 6 and 7(3 + 4) (n = 26%-40.0%) conferring a protective effect on the GG genotype (OR = 0.45, p = 0.02). The same genotype showed an OR = 2.71 (p = 0.01) for patients with low severity. The HNF1B-KLK3-ELAC2-TMPRSS2-ERG haplotypes: GAAT, AAAT, GAGT, and AAGT were more frequent in patients with Pca with OR ranging from 4.65 to 2.48. CONCLUSIONS: Higher frequencies of risk alleles were confirmed in the SNPs, KLK3 rs2735839_A, ELAC2 rs4792311_A, and TMPRSS2 rs12329760_T in patients with Pca. Rs2735839_A was associated with risk of Pca and rs4792311_A with severity and Gleason score of 7(4 + 3) or greater. There is a need for careful observation of rs2735839 and rs4792311 in association with the prostatic biopsy due to the increased risk of Pca.


Assuntos
Antígeno Prostático Específico , Neoplasias da Próstata , Masculino , Humanos , Calicreínas/genética , Predisposição Genética para Doença , Neoplasias da Próstata/patologia , Genótipo , Polimorfismo de Nucleotídeo Único , Regulador Transcricional ERG/genética , Fator 1-beta Nuclear de Hepatócito/genética , Proteínas de Neoplasias , beta Catenina/genética
6.
J Biol Chem ; 299(12): 105453, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37956771

RESUMO

The ETS transcription factor ERG is aberrantly expressed in approximately 50% of prostate tumors due to chromosomal rearrangements such as TMPRSS2/ERG. The ability of ERG to drive oncogenesis in prostate epithelial cells requires interaction with distinct coactivators, such as the RNA-binding protein EWS. Here, we find that ERG has both direct and indirect interactions with EWS, and the indirect interaction is mediated by the poly-A RNA-binding protein PABPC1. PABPC1 directly bound both ERG and EWS. ERG expression in prostate cells promoted PABPC1 localization to the nucleus and recruited PABPC1 to ERG/EWS-binding sites in the genome. Knockdown of PABPC1 in prostate cells abrogated ERG-mediated phenotypes and decreased the ability of ERG to activate transcription. These findings define a complex including ERG and the RNA-binding proteins EWS and PABPC1 that represents a potential therapeutic target for ERG-positive prostate cancer and identify a novel nuclear role for PABPC1.


Assuntos
Proteína I de Ligação a Poli(A) , Próstata , Proteínas Proto-Oncogênicas c-ets , Proteína EWS de Ligação a RNA , Humanos , Masculino , Linhagem Celular Tumoral , Núcleo Celular/metabolismo , Genoma Humano/genética , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Proteína I de Ligação a Poli(A)/metabolismo , Próstata/citologia , Próstata/metabolismo , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Ligação Proteica , Proteínas Proto-Oncogênicas c-ets/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Ativação Transcricional , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
7.
Nat Commun ; 14(1): 7435, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37973913

RESUMO

SND1 and MTDH are known to promote cancer and therapy resistance, but their mechanisms and interactions with other oncogenes remain unclear. Here, we show that oncoprotein ERG interacts with SND1/MTDH complex through SND1's Tudor domain. ERG, an ETS-domain transcription factor, is overexpressed in many prostate cancers. Knocking down SND1 in human prostate epithelial cells, especially those overexpressing ERG, negatively impacts cell proliferation. Transcriptional analysis shows substantial overlap in genes regulated by ERG and SND1. Mechanistically, we show that ERG promotes nuclear localization of SND1/MTDH. Forced nuclear localization of SND1 prominently increases its growth promoting function irrespective of ERG expression. In mice, prostate-specific Snd1 deletion reduces cancer growth and tumor burden in a prostate cancer model (PB-Cre/Ptenflox/flox/ERG mice), Moreover, we find a significant overlap between prostate transcriptional signatures of ERG and SND1. These findings highlight SND1's crucial role in prostate tumorigenesis, suggesting SND1 as a potential therapeutic target in prostate cancer.


Assuntos
Neoplasias da Próstata , Animais , Humanos , Masculino , Camundongos , Transformação Celular Neoplásica/genética , Endonucleases/genética , Endonucleases/metabolismo , Regulação Neoplásica da Expressão Gênica , Proteínas de Membrana/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Domínio Tudor
8.
Nat Commun ; 14(1): 4671, 2023 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-37537199

RESUMO

Whether TMPRSS2-ERG fusion and TP53 gene alteration coordinately promote prostate cancer (PCa) remains unclear. Here we demonstrate that TMPRSS2-ERG fusion and TP53 mutation / deletion co-occur in PCa patient specimens and this co-occurrence accelerates prostatic oncogenesis. p53 gain-of-function (GOF) mutants are now shown to bind to a unique DNA sequence in the CTNNB1 gene promoter and transactivate its expression. ERG and ß-Catenin co-occupy sites at pyrimidine synthesis gene (PSG) loci and promote PSG expression, pyrimidine synthesis and PCa growth. ß-Catenin inhibition by small molecule inhibitors or oligonucleotide-based PROTAC suppresses TMPRSS2-ERG- and p53 mutant-positive PCa cell growth in vitro and in mice. Our study identifies a gene transactivation function of GOF mutant p53 and reveals ß-Catenin as a transcriptional target gene of p53 GOF mutants and a driver and therapeutic target of TMPRSS2-ERG- and p53 GOF mutant-positive PCa.


Assuntos
Neoplasias da Próstata , Regulador Transcricional ERG , Proteína Supressora de Tumor p53 , Animais , Humanos , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Mutação com Ganho de Função , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , Proto-Oncogenes , Pirimidinas/biossíntese , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Proteína Supressora de Tumor p53/genética , Proteína Supressora de Tumor p53/metabolismo
9.
Cancer Epidemiol Biomarkers Prev ; 32(10): 1436-1443, 2023 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-37555839

RESUMO

BACKGROUND: The prostate cancer subtype defined by the presence of TMPRSS2:ERG has been shown to be molecularly and epidemiologically distinct. However, few studies have investigated germline genetic variants associating with TMPRSS2:ERG fusion status. METHODS: We performed a genome-wide association study with 396 TMPRSS2:ERG(+) cases, 390 TMPRSS2:ERG(-) cases, and 2,386 cancer-free controls from the Physicians' Health Study (PHS), the Health Professionals Follow-up Study (HPFS), and a Seattle-based Fred Hutchinson (FH) Cancer Center Prostate Cancer Study. We applied logistic regression models to test the associations between ∼5 million SNPs with TMPRSS2:ERG fusion status accounting for population stratification. RESULTS: We did not identify genome-wide significant variants comparing the TMPRSS2:ERG(+) to the TMPRSS2:ERG(-) prostate cancer cases in the meta-analysis. When comparing TMPRSS2:ERG(+) prostate cancer cases with controls without prostate cancer, 10 genome-wide significant SNPs on chromosome 17q24.3 were observed in the meta-analysis. When comparing TMPRSS2:ERG(-) prostate cancer cases with controls without prostate cancer, two SNPs on chromosome 8q24.21 in the meta-analysis reached genome-wide significance. CONCLUSIONS: We observed SNPs at several known prostate cancer risk loci (17q24.3, 1q32.1, and 8q24.21) that were differentially and exclusively associated with the risk of developing prostate tumors either with or without the gene fusion. IMPACT: Our findings suggest that tumors with the TMPRSS2:ERG fusion exhibit a different germline genetic etiology compared with fusion negative cases.


Assuntos
Estudo de Associação Genômica Ampla , Neoplasias da Próstata , Masculino , Humanos , Seguimentos , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/genética , Neoplasias da Próstata/patologia , Mutação em Linhagem Germinativa , Regulador Transcricional ERG/genética , Serina Endopeptidases/genética
10.
Arterioscler Thromb Vasc Biol ; 43(8): 1412-1428, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37317853

RESUMO

BACKGROUND: During infectious diseases, proinflammatory cytokines transiently destabilize interactions between adjacent vascular endothelial cells (ECs) to facilitate the passage of immune molecules and cells into tissues. However, in the lung, the resulting vascular hyperpermeability can lead to organ dysfunction. Previous work identified the transcription factor ERG (erythroblast transformation-specific-related gene) as a master regulator of endothelial homeostasis. Here we investigate whether the sensitivity of pulmonary blood vessels to cytokine-induced destabilization is due to organotypic mechanisms affecting the ability of endothelial ERG to protect lung ECs from inflammatory injury. METHODS: Cytokine-dependent ubiquitination and proteasomal degradation of ERG were analyzed in cultured HUVECs (human umbilical vein ECs). Systemic administration of TNFα (tumor necrosis factor alpha) or the bacterial cell wall component lipopolysaccharide was used to cause a widespread inflammatory challenge in mice; ERG protein levels were assessed by immunoprecipitation, immunoblot, and immunofluorescence. Murine Erg deletion was genetically induced in ECs (Ergfl/fl;Cdh5[PAC]-CreERT2), and multiple organs were analyzed by histology, immunostaining, and electron microscopy. RESULTS: In vitro, TNFα promoted the ubiquitination and degradation of ERG in HUVECs, which was blocked by the proteasomal inhibitor MG132. In vivo, systemic administration of TNFα or lipopolysaccharide resulted in a rapid and substantial degradation of ERG within lung ECs but not ECs of the retina, heart, liver, or kidney. Pulmonary ERG was also downregulated in a murine model of influenza infection. Ergfl/fl;Cdh5(PAC)-CreERT2 mice spontaneously recapitulated aspects of inflammatory challenges, including lung-predominant vascular hyperpermeability, immune cell recruitment, and fibrosis. These phenotypes were associated with a lung-specific decrease in the expression of Tek-a gene target of ERG previously implicated in maintaining pulmonary vascular stability during inflammation. CONCLUSIONS: Collectively, our data highlight a unique role for ERG in pulmonary vascular function. We propose that cytokine-induced ERG degradation and subsequent transcriptional changes in lung ECs play critical roles in the destabilization of pulmonary blood vessels during infectious diseases.


Assuntos
Doenças Transmissíveis , Fatores de Transcrição , Humanos , Camundongos , Animais , Fatores de Transcrição/metabolismo , Fator de Necrose Tumoral alfa/farmacologia , Fator de Necrose Tumoral alfa/metabolismo , Lipopolissacarídeos/farmacologia , Células Endoteliais da Veia Umbilical Humana/metabolismo , Citocinas/metabolismo , Doenças Transmissíveis/metabolismo , Células Cultivadas , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
11.
Genes (Basel) ; 14(6)2023 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-37372318

RESUMO

Ewing sarcomas (ES) are rare small round cell sarcomas often affecting children and characterized by gene fusions involving one member of the FET family of genes (usually EWSR1) and a member of the ETS family of transcription factors (usually FLI1 or ERG). The detection of EWSR1 rearrangements has important diagnostic value. Here, we conducted a retrospective review of 218 consecutive pediatric ES at diagnosis and found eight patients having data from chromosome analysis, FISH/microarray, and gene-fusion assay. Three of these eight ES had novel complex/cryptic EWSR1 rearrangements/fusions by chromosome analysis. One case had a t(9;11;22)(q22;q24;q12) three-way translocation involving EWSR1::FLI1 fusion and 1q jumping translocation. Two cases had cryptic EWSR1 rearrangements/fusions, including one case with a cryptic t(4;11;22)(q35;q24;q12) three-way translocation involving EWSR1::FLI1 fusion, and the other had a cryptic EWSR1::ERG rearrangement/fusion on an abnormal chromosome 22. All patients in this study had various aneuploidies with a gain of chromosome 8 (75%), the most common, followed by a gain of chromosomes 20 (50%) and 4 (37.5%), respectively. Recognition of complex and/or cryptic EWSR1 gene rearrangements/fusions and other chromosome abnormalities (such as jumping translocation and aneuploidies) using a combination of various genetic methods is important for accurate diagnosis, prognosis, and treatment outcomes of pediatric ES.


Assuntos
Neoplasias Ósseas , Sarcoma de Ewing , Sarcoma , Humanos , Sarcoma de Ewing/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a Calmodulina/genética , Translocação Genética , Neoplasias Ósseas/genética , Sarcoma/genética , Aberrações Cromossômicas , Aneuploidia , Fusão Gênica , Regulador Transcricional ERG/genética , Proteína EWS de Ligação a RNA/genética
12.
Int J Mol Sci ; 24(11)2023 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-37298233

RESUMO

Molecular heterogeneity in prostate cancer (PCa) is one of the key reasons underlying the differing likelihoods of recurrence after surgical treatment in individual patients of the same clinical category. In this study, we performed RNA-Seq profiling of 58 localized PCa and 43 locally advanced PCa tissue samples obtained as a result of radical prostatectomy on a cohort of Russian patients. Based on bioinformatics analysis, we examined features of the transcriptome profiles within the high-risk group, including within the most commonly represented molecular subtype, TMPRSS2-ERG. The most significantly affected biological processes in the samples were also identified, so that they may be further studied in the search for new potential therapeutic targets for the categories of PCa under consideration. The highest predictive potential was found with the EEF1A1P5, RPLP0P6, ZNF483, CIBAR1, HECTD2, OGN, and CLIC4 genes. We also reviewed the main transcriptome changes in the groups at intermediate risk of PCa-Gleason Score 7 (groups 2 and 3 according to the ISUP classification)-on the basis of which the LPL, MYC, and TWIST1 genes were identified as promising additional prognostic markers, the statistical significance of which was confirmed using qPCR validation.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Neoplasias da Próstata/genética , Neoplasias da Próstata/cirurgia , Próstata , Fatores de Risco , Perfilação da Expressão Gênica , Prostatectomia , Transcriptoma , Proteínas de Fusão Oncogênica/genética , Regulador Transcricional ERG/genética , Biomarcadores Tumorais/genética , Canais de Cloreto/genética , Serina Endopeptidases/genética
13.
PLoS One ; 18(6): e0286996, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37310937

RESUMO

Ets-related gene (ERG) is overexpressed as a fusion protein in prostate cancer. During metastasis, the pathological role of ERG is associated with cell proliferation, invasion, and angiogenesis. Here, we hypothesized that miRNAs regulate ERG expression through its 3'UTR. Several bioinformatics tools were used to identify miRNAs and their binding sites on 3'UTR of ERG. The selected miRNAs expression was analyzed in prostate cancer samples by qPCR. The miRNAs overexpression was induced in prostate cancer cells (VCaP) to analyze ERG expression. Reporter gene assay was performed to evaluate the ERG activity in response to selected miRNAs. The expression of ERG downstream target genes was also investigated through qPCR after miRNAs overexpression. To observe the effects of selected miRNAs on cell proliferation and migration, scratch assay was performed to calculate the cell migration rate. miR-4482 and miR-3912 were selected from bioinformatics databases. miR-4482 and -3912 expression were decreased in prostate cancer samples, as compared to controls (p<0.05 and p<0.001), respectively. Overexpression of miR-4482 and miR-3912 significantly reduced ERG mRNA (p<0.001 and p<0.01), respectively) and protein (p<0.01) in prostate cancer cells. The transcriptional activity of ERG was significantly reduced (p<0.01) in response to miR-4482 and-3912. ERG angiogenic targets and cell migration rate was also reduced significantly (p<0.001) after miR-4482 and -3912 over-expression. This study indicates that miR-4482 and -3912 can suppress the ERG expression and its target genes, thereby, halt prostate cancer progression. These miRNAs may be employed as a potential therapeutic target for the miRNA-based therapy against prostate cancer.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Regiões 3' não Traduzidas/genética , Neoplasias da Próstata/genética , Próstata , Genes Reguladores , Sítios de Ligação , Regulador Transcricional ERG/genética
15.
Int J Dermatol ; 62(5): 637-648, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36929499

RESUMO

BACKGROUND: Recalcitrant dermatophyte infections are being reported from various parts of the world due to varied causes including strain variation, steroid misuse, SQLE mutations, and variable quality of itraconazole pellet formulations. The oral drug preferred in endemic areas is itraconazole, to which MIC levels remain low, and clinical failures to itraconazole reported defy a sound scientific explanation. OBJECTIVES: The objective of the study was to conduct a proteomic and genomic analysis on isolates from therapeutically recalcitrant case with isolation of gene mutations and enzymatic abnormalities to explain azole failures. METHODS: Trichophyton mentagrophyte interdigitale complex strains were isolated from seven clinically non-responding tinea corporis/cruris patients, who had failed a sequential course of 6 weeks of terbinafine 250 mg QD and itraconazole 100 mg BID. After AFST 1 strain, KA01 with high MIC to most drugs was characterized using whole genome sequencing, comparative proteomic profiling, and total sterol quantification. RESULTS: Sterol quantification showed that the standard strain of Trichophyton mentagrophytes (MTCC-7687) had half the ergosterol content than the resistant KA01 strain. Genomic analysis revealed mutations in SQLE, ERG4, ERG11, MDR1, MFS genes, and a novel ERG3 mutation. Proteomic analysis established the aberrant expression of acetyl Co-A transferase in the resistant strain and upregulation of thioredoxin reductase and peroxiredoxin. CONCLUSION: Our findings demonstrate possible reasons for multidrug resistance in the prevalent strain with mutations in genes that predict terbinafine (SQLE) and azole actions (ERG4, ERG11, ERG3) apart from efflux pumps (MDR1, MFS) that can explain multidrug clinical failures.


Assuntos
Antifúngicos , Tinha , Humanos , Terbinafina/uso terapêutico , Antifúngicos/uso terapêutico , Antifúngicos/farmacologia , Itraconazol/uso terapêutico , Proteômica , Trichophyton/genética , Tinha/tratamento farmacológico , Tinha/epidemiologia , Mutação , Farmacorresistência Fúngica/genética , Testes de Sensibilidade Microbiana , Regulador Transcricional ERG/genética
16.
Cell Biol Int ; 47(5): 1017-1030, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36740223

RESUMO

Prostate cancer (PCa) is one of cancer with of the highest incidence and mortality worldwide. Current disease prognostic markers do not differentiate aggressive from indolent PCa with sufficient certainty, and characterization by molecular subtypes has been sought to allow a better classification. TMPRSS2-ERG, SPOP, FOXA1, and IDH1 molecular subtypes have been described, but the association of these subtypes with prognosis in PCa is unclear; their frequency in Colombian patients is also unknown. Formalin-fixed and paraffin-embedded samples of radical prostatectomy from 112 patients with PCa were used. The TMPRSS2-ERG subtype was assessed with fluorescent in situ hybridization. The mutations in SPOP, FOXA1, and IDH1 in hot-spot regions were evaluated using Sanger sequencing. Fusion was detected in 71 patients (63.4%). No statistically significant differences were found between the state of fusion and the variables analyzed. In the 41 fusion-negative cases (36.6%), two patients (4.9%) had missense mutations in SPOP (p.F102C and p.F133L), representing a 1.8% of the overall cohort. The low frequency of this subtype in Colombians could be explained by the reported variability in the frequency of these mutations according to the population (5%-20%). No mutations were found in FOXA1 in the cases analyzed. The synonym SNP rs11554137 IDH1105GGT was found in tumor tissue but not in the normal tissue in one case. A larger cohort of Colombian PCa patients is needed for future studies to validate these findings and gain a better understanding of the molecular profile of this cancer in our population and if there are any differences by Colombian regions.


Assuntos
Neoplasias da Próstata , Masculino , Humanos , Hibridização in Situ Fluorescente , Colômbia , Neoplasias da Próstata/patologia , Proteínas Repressoras/genética , Regulador Transcricional ERG/genética , Fator 3-alfa Nuclear de Hepatócito/genética , Serina Endopeptidases , Proteínas de Fusão Oncogênica/genética , Isocitrato Desidrogenase
17.
Proc Natl Acad Sci U S A ; 120(2): e2211189119, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36595681

RESUMO

Human ETS Related Gene, ERG, a master transcription factor, turns oncogenic upon its out-of-context activation in diverse developmental lineages. However, the mechanism underlying its lineage-specific activation of Notch (N), Wnt, or EZH2-three well-characterized oncogenic targets of ERG-remains elusive. We reasoned that deep homology in genetic tool kits might help uncover such elusive cancer mechanisms in Drosophila. By heterologous gain of human ERG in Drosophila, here we reveal Chip, which codes for a transcriptional coactivator, LIM-domain-binding (LDB) protein, as its novel target. ERG represses Drosophila Chip via its direct binding and, indirectly, via E(z)-mediated silencing of its promoter. Downregulation of Chip disrupts LIM-HD complex formed between Chip and Tailup (Tup)-a LIM-HD transcription factor-in the developing notum. A consequent activation of N-driven Wg signaling leads to notum-to-wing transdetermination. These fallouts of ERG gain are arrested upon a simultaneous gain of Chip, sequestration of Wg ligand, and, alternatively, loss of N signaling or E(z) activity. Finally, we show that the human LDB1, a homolog of Drosophila Chip, is repressed in ERG-positive prostate cancer cells. Besides identifying an elusive target of human ERG, our study unravels an underpinning of its lineage-specific carcinogenesis.


Assuntos
Proteínas de Drosophila , Drosophila , Masculino , Animais , Humanos , Drosophila/genética , Análise de Sequência com Séries de Oligonucleotídeos , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Fatores de Transcrição/metabolismo , Proteínas Oncogênicas/metabolismo , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo
18.
Mol Cancer Ther ; 22(3): 306-316, 2023 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-36622760

RESUMO

Fusion of the E-26 transformation-specific (ETS)-related gene (ERG) with transmembrane serine protease 2 (TMPRSS2) is a crucial step in the occurrence and progression of approximately 50% of prostate cancers. Despite significant progress in drug discovery, ERG inhibitors have yet to be approved for the clinical treatment of prostate cancer. In this study, we used computer-aided drug design (CADD)-based virtual screening to screen for potential inhibitors of ERG. In vivo and in vitro methods revealed that nifuroxazide (NFZ) inhibited the proliferation of a TMPRSS2:ERG fusion-positive prostate cancer cell line (VCaP) with an IC50 lower than that of ERG-negative prostate cancer cell lines (LNCaP, DU145, and WPMY cells). Poly [ADP-ribose] polymerase 1, the critical mediator of parthanatos, is known to bind ERG and is required for ERG-mediated transcription. NFZ blocked this interaction and overly activated PARP1, leading to cell death that was reduced by olaparib, a PARP1 inhibitor. These results show that NFZ inhibits ERG, leading to parthanatic cell death.


Assuntos
Nitrofuranos , Proteínas de Fusão Oncogênica , Parthanatos , Neoplasias da Próstata , Humanos , Masculino , Linhagem Celular Tumoral , Proteínas de Fusão Oncogênica/genética , Parthanatos/efeitos dos fármacos , Neoplasias da Próstata/tratamento farmacológico , Serina Endopeptidases/genética , Serina Endopeptidases/metabolismo , Transativadores/genética , Regulador Transcricional ERG/genética , Regulador Transcricional ERG/metabolismo , Nitrofuranos/farmacologia , Nitrofuranos/uso terapêutico
19.
Prostate ; 83(5): 395-402, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36598071

RESUMO

BACKGROUND: Men of African ancestry have disproportionately high incidence rates of prostate cancer (PCa) and have high mortality rates. While there is evidence for a higher genetic predisposition for incidence of PCa in men of African ancestry compared to men of European ancestry, there have been few transcriptomic studies on PCa in men of African ancestry in the African continent. OBJECTIVE: We performed transcriptomic profiling and fusion analysis on bulk RNA sequencing (RNA-seq) samples from 24 Nigerian PCa patients to investigate the transcriptomic and genomic rearrangement landscape of PCa in Nigerian men. DESIGN: Bulk RNA-seq was performed on 24 formalin-fixed paraffin-embeded (FFPE) prostatectomy specimens of Nigerian men. Transcriptomic analysis was performed on 11 high-quality samples. Arriba Fusion and STAR Fusion were used for fusion detection. RESULTS: 4/11 (36%) of the samples harbored an erythroblast transformation-specific (ETS) fusion event; 1/11 (9%) had a TMPRSS2-ERG fusion; 2/11 had a TMPRSS2-ETV5 fusion, and 1/11 had a SLC45A3-SKIL fusion. Hierarchical clustering of normalized and mean-centered gene expression showed clustering of fusion positive samples. Furthermore, we developed gene set signatures for Nigerian PCa based on fusion events. By projecting the cancer genome atlas prostate adenocarcinoma (TCGA-PRAD) bulk RNA-seq data set onto the transcriptional space defined by these signatures derived from Nigerian PCa patients, we identified a positive correlation between the Nigerian fusion signature and fusion positive samples in the TCGA-PRAD data set. CONCLUSIONS: Less frequent ETS fusion events other than TMPRSS2-ERG such as TMPRSS2-ETV5 and non-ETS fusion events such as SLC45A3-SKIL may be more common in PCa in Nigerian men. This study provides useful working transcriptomic signatures that characterize oncogenic states representative of specific gene fusion events in PCa from Nigerian men.


Assuntos
Neoplasias da Próstata , Transcriptoma , Masculino , Humanos , Regulador Transcricional ERG/genética , Proteínas de Fusão Oncogênica/genética , Neoplasias da Próstata/patologia , Genômica
20.
Cancer Genet ; 272-273: 23-28, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36657266

RESUMO

ETS-related gene (ERG) amplification, observed in 4-6% of acute myeloid leukemia (AML), is associated with unfavorable prognosis. To determine coincident effects of additional genomic abnormalities in AML with ERG amplification (ERGamp), we examined 11 ERGamp cases of 205 newly diagnosed AML using chromosomal microarray analysis and next generation sequencing. ERGamp cases demonstrated a distinct pattern of high genetic complexity: loss of 5q, chromothripsis and TP53 loss of function variants. Remarkably, allelic TP53 loss or loss of heterozygosity (LOH) co-occurring with TP53 inactivating mutation dramatically effected ERGamp tumor patient outcome. In the presence of homozygous TP53 loss of function, ERGamp patients demonstrated no response to induction chemotherapy with median overall survival (OS) of 3.8 months (N = 9). Two patients with heterozygous loss of TP53 function underwent alloSCT without evidence of relapse at one year. Similarly, a validation TCGA cohort, 6 of the 8 ERGamp cases with TP53 loss of function demonstrated median OS of 2.5 months. This suggests that with TP53 mutant ERGamp AML, successive loss of the second TP53 allele, typically by 17p deletion or LOH identifies a specific high-risk subtype of AML patients who are resistant to standard induction chemotherapy and need novel approaches to avert the very poor prognosis.


Assuntos
Leucemia Mieloide Aguda , Proteína Supressora de Tumor p53 , Humanos , Proteína Supressora de Tumor p53/genética , Leucemia Mieloide Aguda/patologia , Perda de Heterozigosidade , Prognóstico , Hibridização in Situ Fluorescente , Mutação/genética , Regulador Transcricional ERG/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...